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Abstract

A model is presented for determining the hyper-resistivity coefficient that

arises due to the presence of magnetic structures that appear in plasma config-

urations such as the reversed field pinch and spheromak. Emphasis is placed

on modeling cases where magnetic islands pass from non-overlap to overlap

regimes. Earlier works have shown that a diffusion-based model can give real-

istic transport scalings when magnetic islands are isolated, and this formalism

is extended to apply to the hyper-resistivity problem. In this case electrons

may either be in long or short mean-free-path regimes and intuitively-based

arguments are presented of how to extend previous theories to incorporate

this feature in the presence of magnetic structures that pass from laminar to

∗Work performed under the auspices of the U.S. Department of Energy by University of California

Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

1



moderately chaotic regimes.
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I. INTRODUCTION

This paper develops a hyper-resistive transport equation that can be applied to the

magnetic field evolution of reversed field pinches (RFP’s) and spheromaks. The mechanism

for hyper-resistivity is often attributed to the presence of chaos in the magnetic field structure

of a plasma, and the basic framework for this description was first described in [1], who used

chaotic (or braided) magnetic field concepts developed earlier by Zaslovski, et al. [2], Stix [3],

and Rechester and Rosenbluth [4]. These approaches assume that the magnetic field form a

chaotic sea, a situation that may not always apply in actual experiment, where when there

is good confinement, there can be magnetic island structures that are separated by regions

of good magnetic flux surfaces. Alternatively, a physical system can exhibit two different

phases, a time interval when there are good magnetic surfaces and a time interval when there

is a chaotic sea. The goal of this paper is to develop a set of transport equations that can

bridge both limits. A similar problem was discussed in relation to kinetic instabilities [5],

when there is only modest enhanced transport, when KAM surfaces separate kinetic islands

(see for example, Ref. [6]) that have emerged from particle resonances, while transport is

global and strongly enhanced when the islands are large enough to cause island overlap that

break KAM surfaces. Initially, the formalism developed in Ref. [5] is applied to the magnetic

field problem, but this formalism needs to be extended in order to incorporate physically

important regimes and to make contact with the theory of Ref. [4] which applies to the

case when the field lines are chaotic and finite electron mean-free-path along field lines are

important.

In this paper we will primarily address the development of chaotic fields due to the

nonlinear growth of tearing mode instabilities [7] whose evolution has been described by

Rutherford [8] for a low-beta plasma. In this case plasma inertial effects are minimized

and electron dynamics along a field line dominate the nonlinear response. We will further

simplify the formal study by limiting its development to a cylindrical plasma, although we

will speculate on the applicability of our results to more realistic geometry. Thus we neglect
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other interesting MHD-dynamics that might govern hyper-resistivity [e.g. Refs. [9-12]. A

more complete transport theory, such as is discussed in Ref. [13], and built upon in Ref. [14]

still needs to be incorporated to describe a general turbulent transport framework in a

toroidal plasma.

The issue of the effect of a finite number of magnetic islands has been discussed by

several authors [15–17]. The approach closest to ours is presented in Ref. [17], but we obtain

somewhat different results. In our work we match the results of the long mean-free-path

limit to the Rechester and Rosenbluth diffusion coefficient given in Ref. [4]. Such matching

is not achieved in Ref. [17] (see further discussion of this point in Sec. IV).

Our formalism begins with a fairly systematic approach that develops a quasi-linear

theory with a finite number of islands using the method developed in Ref. [5]. That method

linked conventional quasi-linear theory, when there is strong resonance overlap, to a quasi-

linear theory of a single island that is governed by a diffusion equation. The treatment

of the latter is based on rigorous arguments when modest collision effects are present but

becomes more intuitive in the collisionless limit. Nonetheless in Refs. [2] and [5] it was shown

that the diffusion captured many (though not all) of results rigorously derived from single

island equations [2,18,19]. As our physical modeling is not rigorous, it is not surprising

when some expected conservation laws do not emerge from our formalism. As an example,

we nearly reproduce a magnetic helicity conservation structure [11,20,21] which has been

used by Boozer [22] to obtain a differential conservation structure. Our theory differs from

the Boozer form only in non-dominant terms, and we modify in an ad-hoc manner the final

equation to cast the final result in the Boozer conservation form. Other, constraints violated

are energy, momentum and perhaps intrinsic particle flux ambipolarity [23–25]. (The key to

demonstrating these conservation properties in weak perturbation theory is to incorporate

non-resonant terms into the quasi-linear equation and to couple their response to the mode

dynamics; a procedure that is readily incorporated with so-called perturbative modes [26]

but which has not been totally solved for non-perturbative modes such as nonlinear tearing
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modes.)

II. OVERVIEW OF PAPER

The structure of the paper is as follows. In Sec. III we begin by presenting a theory that is

direct generalization of the method used in Ref. [5], and we obtain the quasi-linear response of

electrons with a long mean-free-path to very low frequency transverse magnetic perturbations

(that characterize low beta tearing modes). We study the response of electrons to an isolated

magnetic island. The electrons can traverse a thin island by cross-field transport. The

theory presented in this work uses a Krook model with an effective collision frequency that

can be synchronized to the results of a Fokker-Planck equation as described in Ref. [19].

However, once electrons can circulate around the magnetic island (assuming long mean-free-

path along the field lines) faster than they can cross it by diffusive processes, the description

of the response through a diffusion equation losses its rigor. Nonetheless, in Refs. [2,5] it

was shown that a description where there is a large diffusion coefficient over a limited region

of phase space produces physically reasonable scalings and we assume a similar applicability

applies to our problem. When the isolated island response is extended to many modes using

the standard random phase assumption, we obtain a global quasi-linear equation.

In Sec. IV several issues are developed in a physically intuitive manner. One is to compare

the diffusion equation obtained when there are many modes, with the magnetic diffusion

coefficient found for a stochastic magnetic field as described in Ref. [2]. To the extent

electrons move along field lines without collisions or only cross-field collision processes are

accounted for, we find that the results of the work presented here replicate the results of

Refs. [2] and [5]. When collisions that impede motion along a field line are taken into

account we may need to generalize the physical description. This arises when electrons can

circulate around the island through many random steps faster than they can move across

the magnetic island through cross field processes. We describe in a heuristic manner the

physics processes that then need to be accounted for to reproduce the short mean path form
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of Rechester-Rosenbluth diffusion [4]. Another study of how to bridge the gap between long

and short mean-free-paths of particles in stochastic fields is given in Ref. [16].

In Ref. [4] the magnetic correlation length, (the size of the mean-free-path compared to

the magnetic correlation length is what determines the long or short mean-free-path limit

in Rechester-Rosenbluth theory) is not precisely defined. This problem has been studied in

Ref. [27] and in general there is not a universal expression for the correlation length. We

point out that if the magnetic field patterns are only moderately chaotic, so that magnetic

island structure still persists as part of the chaotic fields, the magnetic correlation length

will be comparable to the circumferential length of an island and this length is used for in

our theory. Then, when there is island overlap, we obtain a diffusion coefficient similar to

that of Rechester and Rosenbluth but with a correlation length that is dependent on the

magnitude of the perturbed magnetic fields.

Finally all these results are incorporated into a quasi-linear equation that is applied to

a wide range of parameters. The first moment of this equation is taken to form an ohm’s

law that contains a hyper-resistivity term and thereby gives a current-diffusion equation.

A brief discussion is given of how the current-diffusion equation can in principle be solved

simultaneously with the ∆′ parameter used in both linear [7] and nonlinear [8] tearing mode

theory. Then we can in principle determine the spectrum and saturation level of tearing

modes, which in turn modifies the current diffusion equation. The numerical investigation

of these equations will complement direct computational studies of nonlinear resistive MHD

codes such as NIMROD [28] and other MHD studies [29] to understand dynamo-like behavior

in RFP’s and spheromaks.
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III. ELECTRON RESPONSE TO MAGNETIC ISLANDS

(FORMAL PRESENTATION)

A. Perturbed magnetic field

We begin with the response to a single island. First, if there are no field perturbations,

the magnetic vector potentials and magnetic fields are given by

A = Φ∇θ − ψ∇φ (1)

where Φ and ψ are respectively the toroidal (for arbitrarily large aspect ratio) and poloidal

flux. The magnetic field is

∇×A =∇Φ×∇θ −∇ψ ×∇φ = Bφφ̂+Bθθ̂

Φ =
∫ r
0
drr Bφ, ψ =

∫ r
0
drRBθ (2)

with r the minor radius, R the major radius (R� r) and 2πR = L is the periodicity length.

We introduce a single resonant helical perturbation with an amplitude proportional to

exp(im ξ) with ξ = θ − n
m
φ. We look in a region where b ·∇ exp[im ξ] ≈ 0, so that we are

considering a resonant perturbation. If the perturbation is small enough, the radial scale

length of the perturbation can be ignored, the perturbed field is represented by a radial field

δB ⊥ b0, with b0 = B0/B0 and B0 the unperturbed magnetic field. With perturbations,

the unit vector b is of the form, b = b0 + δB/B.

To treat this case it is convenient to modify the vector potential to the form

A = Φ∇θ − ψ∇φ

= Φ∇ξ − ψ̃∇φ

with

ψ̃ =
(
ψ −

n

m
Φ
)
·
=
·
−
δr2

2

(
Bφ
q
s

)
n,m

+ ψ̃0
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where ψ̃0 is a constant that can be ignored as it does not affect the magnetic field, δr =

(r − rn,m) and n,m refer to resonance surface where b0 ·∇ exp(imξ) = 0. Note that at

r = rn,m, q = qn,m,
nBφ(rn,m)

R
− mBφ(rn,m)

rn,m
= 0, qn,m =

rBφ
RBθ

∣∣∣
n,m
, and s = r

q
dq/dr

∣∣∣
n,m
.

Now a perturbation of the form −2 δBr Rrn,m cos mξ
m

∇φ is added to the vector potential.

Hence we find,

A = Φ∇ξ − χ̃∇φ (3)

with

χ̃ =

[
−
δr2

2
+
2 δBrRrn,m

m
cos mξ

](
sBφ

q

)
n,m

. (4)

The magnetic field is

B = ∇×A =∇Φ×∇ξ − θ̂
δr

R

(
sBφ
q

)
n,m

+ r̂ 2 δBr sinmξ. (5)

B. Kinetic response of electrons to magnetic perturbations

Now let us consider the drift kinetic equation for electrons. We will use coordinates

where µ (magnetic moment) and v‖ and Rg (guiding center) are the variables. We neglect

electron flows except the dominant one along the field line. We then have,

∂f

∂t
+ v‖ b · ∇f − C(f) = −

e

me
E · b

∂f

∂v‖
(6)

where C(f) is the collisional operator and e the electron charge. To lowest order we neglect

the fine-scale structure of the perturbed field δBr, so that b = b0. The lowest order solution

is

f = f0(Φ,v) (7)

where f0(Φ,v) is close to a Maxwellian that is needed to balance the collisional term, but

with a small departure to allow for an equilibrium current generated by either a mean

inductive field and hyper-resistive effects that are to be calculated in this paper.
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To next order, we account for the fine-scale perturbed magnetic field, and Eq. (6) becomes

∂f1
∂t
+ v‖b0 ·∇f1 − C(f1) = −

e

me
E‖
∂f1
∂v‖
− v‖

δB

B
·∇f0 (8)

or in ξ and φ coordinates

∂f1

∂t
+ v‖

Bφ

BR

∂f1

∂φ
+ v‖

(
−
n

m

Bφ

BR
+
Bθ

rB

)
∂f1

∂ξ
− C(f1) +

e

me
E‖0

∂f1

∂v‖

= −
e

me
E‖1

∂f0

∂v‖
+

(
iv‖

δBr

B
r̂ ·∇f0 e

imξ + c.c.

)
. (9)

Note that

(
Bθ

r
−
n

m

Bφ

R

)
≈ −

δr

R

(
Bφs

qr

)
m,n

. (10)

To solve this equation we assume that the perturbed magnetic fields can be treated as

quasistationary, so that ∂f1
∂t
, and the inductive field E‖1, associated with the time dependence

of the perturbed fields, can be ignored. Further, note that we may have C(f1) >∼ νf1

(where ν is the electron scattering rate) because C(f1) proportional to a second derivative

in either guiding center space [discussed below after Eq. (13)] or velocity space. Thus we will

sometimes neglect ν, although we will see there are important regimes when it needs to be

considered. On the other hand the E‖0 term is balanced by the rate the electromagnetic skin

effect changes, which is even much smaller than ν. Thus, E‖0 can be neglected in Eq. (9).

In the appendix we consider Eq. (8) in its nonlinear limit, when f0 and f1 are replaced

by the total f and collisional and electric field terms are ignored (but when there can be an

overall current in the global equilibrium). The result of this analysis is that electrons move

around an island at a typical rate (we will not be concerned with precise numerical factors),

ωtr ≈
vthe

B

(
2smBφδBr

qRr

)1/2
m,n

(11)

and the magnetic island width ∆Isl is,

∆Isl =

(
2δBrqRr

sBφm

)1/2
m,n

. (12)
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We now solve Eq. (9) by first assuming that electron diffusion takes a particle across the

island width ∆Isl at a rate that is faster than ωtr. If we treat the collisional term as a Krook

operator of the form, νeff f1, we obtain the solution,

f1 =
−v‖ δBr eimξr̂ ·∇f

iνeff + δr(mv‖sBφ/qBrR)m,n
+ c.c.

=
i δBre

imξv‖r̂ · ∇f νeff
ν2eff + δr

2(mv‖sBφ/qBrR)2m,n
+ c.c. + (nonresonant contribution). (13)

To estimate the magnitude of the Krook operator, we use that in guiding center coordi-

nates the form of the collision term is C(f) ' νρ2∇2f ∼ νρ2f/δr2, where ρ is the electron

Larmor radius, and ν the 90◦ scattering rate of an electron (this procedure is discussed more

fully in Ref. [19]). Near resonance this term is balanced by the term

δr

BR

(
Bφs

qr

)
m,n

v‖
∂f

∂ξ
≈
δr v‖

R

mBφs

qrB
f,

giving

δr ∼

(
νρ2

qrRB

mBφsv‖

)1/3
. (14)

Thus,

νeff f ∼
νρ2f

δr2
≈ ν1/3

(
ρsmBφvthe

qRrB

)2/3
f (15)

where the electron thermal velocity is used for v‖. We should note that this method of

estimation is valid if δr in Eq. (14) is greater than the magnetic island width ∆Isl given in

Eq. (12). Otherwise, the exact solution discussed in the appendix is relevant. Then its effect

can be captured in an approximate way in the manner described in Ref. [19]. Specifically

we add to νeff , determined in Eq. (15), the term ωtr from Eq. (11). Hence, for νeff we use,

νeff = ν
1/3

(
ρsmBφvthe

qRrB

)2/3
m,n

+ vthe

(
2smBφδBr
qrRB2

)1/2
m,n

= νeff 0 + ωtr. (16)

We note that the resonance term for f1 given in Eq. (13), has Lorentzian localization. It

may be that the localization should even be sharper, especially when it is determined by ωtr

in Eq. (16).
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The “quasi-linear” response is obtained by iterating the Vlasov equation to next order,

to find the spatially homogeneous response. We obtain, keeping collisions and the mean

inductive field,

v‖b0 ·∇f − C(f) +
e

m
E · b0

∂f

∂v‖
−
iv‖

B
∇ ·

(
δBrf1e

imξ + c.c.
)
f1 = 0. (17)

We have kept the v‖b0 ·∇f term for formal reasons that are important when we have several

resonances present. If we substitute for f1 in Eq. (14), and integrate by
∫
ds

v‖
over a surface,

we obtain

−C(f) +
e

m
E · b0

∂f

∂v‖
=
v2‖

B
∇ ·

r̂ 2|δBr|2m,nνeff r̂[
ν2eff + δr

2
m,n

(
mv‖sBφ
qBrR

)2
m,n

]
Bm,n

· ∇f. (18)

Subsequently we suppress the subscripts of δr and we assume the two terms on the left-hand

side of Eq. (18) are insensitive to the averaging procedure. If there were several resonances,

the above procedure is readily generalized assuming a random phase approximation, to give,

−C(f) +
e

m
E · b0

∂f

∂v‖
=

v2‖

B2
∇ ·

∑
(n,m)

r̂ 2|δBr|2m,nνeff r̂[
ν2eff +

(
δr
smv‖
rRq

Bφ
qB

)2
m,n

] · ∇f. (19)

(Note, we have removed 1/B from inside the integral to conform with the ultimate magnetic

helicity conservation form we wish to obtain.)

IV. ELECTRON RESPONSE TO MAGNETIC ISLANDS

A. Heuristic considerations for the effect of finite mean-free path along field lines

At this stage the procedure has been relatively formal. We see that we have ob-

tained a diffusive response to the magnetic perturbations which is quite smooth if |νeff | >

∆rm,n
(
mv‖
rRq

sBφ
B

)
where ∆rm,n is the radial separation between resonant surfaces. On the

other hand in the opposite limit, the radial diffusive response is very localized to the res-

onant surface. The result would be that radial diffusion is inhibited where the diffusion

coefficient is small.
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Before continuing with our main line of inquiry, let us touch base with the previously

considered problem, essentially discussed in Ref. [2]. There a spectrum of many modes is

considered, where the distance along the field lines plays the role of time. This is exactly

equivalent to our case in the limit of extremely low collisionality. For our problem, where

d` = v‖dt, we obtain a diffusion coefficient D = |v‖|Dm, where Dm is the magnetic diffusion

coefficient of Ref. [2].

With many modes, and negligible collisional effects one can readily argue that the term

v‖b0 · ∇f , in Eq. (17) is more accurately represented by v‖b · ∇f with b evaluated with the

omission of just one of the resonant terms at the particular radius that entangled magnetic

fields have taken a field line to. With enough perturbative components of the field in the

spectrum, this value for b is arbitrarily close to the direction of the true magnetic field.

When we treat the limit where νeff → 0, and assume the radial gradients are weak, we can

annihilate the v‖ b ·∇f term by averaging over the trajectory
∫
ds

v‖
, and we obtain, with

the definition 〈G〉 =
∫ L
0

dsG

v‖

/
L,

−〈C(f)〉+
e

me

〈
E · b

∂f

∂v‖

〉
= lim

νeff→0

1

B2
∇ · r̂

〈∑
m,n

2|δBr|2 νeffv2‖[
ν2eff +

(
δr
smv‖
rRq

Bφ
qB

)2
m,n

]〉 r̂ ·∇f. (20)
There are several weak links to the above procedure, as was also noted in Ref. [2]. We

have assumed the annihilation procedure commutes with the radial gradient. More explicitly

we write the bracketed term as,〈
lim
νeff→0

∑
m,n

v‖
2|δBr|2m,n νeff/|v‖|

ν2eff/|v
2
‖|+

(
δrm

sBφ
qBrR

)2
m,n

〉

= lim
L→∞

|v‖|
∫ L
0
ds
∑
m,n

2|δBr|2m,n
νeff
|v‖|(

νeff
|v‖|

)2
+ [δrm(sBφ/qBRr)m,n]

2

L
≡ |v‖|DM .

−→ π
∫
dn
∑
m

2|δBr|
2
m,n|v‖|δ

(
δrmsBφ/qBRr

∣∣∣∣
m,n

)
(21)
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(|v‖| arises since s is integrated in the direction of v‖). Equation (21) is basically the magnetic

diffusion coefficient in a stochastic field obtained in Ref. [2]. A test particle at position r0

where the magnitude of the mean field is B0 diffuses radially as 〈(r − r0)2B20〉 = DM |v‖|t.

To obtain this form we need to integrate in L a distance greater than a correlation length

Lc, where Lc is the length along a field line beyond which the radial displacement becomes

stochastic. It should be noted that

DM ≈
(δBrLc)

2

Lc
. (22)

The precise form of the correlation length in the strongly overlapping regime is difficult to

calculate, although it should be somewhat greater than R and depend on magnetic shear.

One also uses a formal procedure where the sum on n is taken as an integral, so that a delta

function then emerges that is independent of νeff .

There is another complication to making contact with the result in Eq. (19) with previ-

ously analyzed results when there is appreciable mode overlap but when collisions need to

be accounted for. We have assumed in our averaging over the stochastic field, that collisions

do not affect the particle. In Ref. [4] collisions are accounted for both in the long mean-free

path (mfp) limit, Lc � Lmfp with Lmfp the mean-free path, and short mfp limit Lmfp � Lc.

In the long mean-free-path limit, but where Lmfp � Lmag (where Lmag is the length of the

stochastic field line in the entire machine), Ref. [4] points out that |v‖| can be replaced by

vthe, the electron thermal speed, in Eq. (21), but only after an interesting subtlety is ac-

counted for. This subtlety is due to the realization that electrons are not strictly constrained

to remain on one dimensional “strings” that would allow an electron to return exactly to its

starting point after a collision turns the electron around. It is pointed out that a cross-field

process must be accounted for to cause the electron to feel a random phase when it goes

back the same distance that it went forward. In particular, in Ref. [4], it is argued that

cross-field diffusion from a random cross-field step the size of a Larmor radius causes phase

decorrelation with respect to the initial and return paths if an electron moves along the

field line a distance much greater than the correlation length Lc. Other processes such as
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magnetic and curvature drifts as well as flow shear due to an otherwise small electric field

can also cause the needed phase randomization. In our formulation, cross-field diffusion is

built in from the very beginning. Hence, the replacement of |v‖| by vthe that is used in

Ref. [4] is readily justified when mode overlap of magnetic islands exists.

There is still an additional subtlety that is particularly important when modes do not

overlap. Let us then discuss the middle term in Eq. (21) (with |v‖| replaced by vthe). We

still assume long mfp, when Lmfp � vthe/ωtr, but now we only have a single mode, with

mode numbers m and n. We explicitly display νeff as νeff = νeff 0 + ωtr,

DM =
2|δBr|2m,n

(
νeff0
vthe
+ ωtr
vthe

)
[(νeff 0 + ωtr)/vthe]

2 + (δrmsBφ/qBRr)
2
m,n

.

We note that if νeff 0 � ωtr, the radial region of diffusion, though limited in size, is larger

than an island width (the diffusion zone, ∆dif is ∆dif ≈ ∆Isl(
νeff0
ωtr
). Such scaling for the zone

of diffusion is also predicted in more rigorous theory, where the radial diffusion operator is

accurately solved. The difference of our heuristic model is only in the particular Lorentzian

shape shape that the Krook model produces, while a more quantitative calculation would

give a sharper cut-off to the diffusion zone compared to a relatively broad Lorentzian shaping

factor.

When νeff 0 is less than ωtr, we have a magnetic “diffusion” coefficient that is only ap-

preciable in a distance ∆dif ≈ ∆Isl, with DM roughly given by DM ≈ B20∆
2
Islωtr/vthe.

This intrinsic diffusivity scales independent of any electron dynamics as from Eq. (11)

ωtr/vthe = (2sB0δBr/B
2qRr)1/2. The single island diffusion coefficient scales in the same

way as the result calculated in Ref. [2], where sophisticated, but still approximate analy-

sis was used. The interpretation of this diffusion coefficient in this regime is that in the

diffusion zone there is a random radial step ∆Isl when the magnetic field line traverses a

circumferential distance vthe/ωtr ∼ B(qRr/smBφδBr)
1/2 around the island. However, we

can expect that the effective diffusion coefficient should have a form factor much narrower

than a Lorentzian as randomness in the magnetic field cannot exist much beyond an island

separatrix.
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Thus the rules we have used produce a reasonable scaling law for diffusion within a

single island, although in a strict sense there is in fact no diffusion when a magnetic island is

well defined (indeed one can well argue that we are dealing with an internal contradiction).

The same problem arises in more general dynamical systems when the problem can be

reduced to considering the dynamics associated with an island emerging from a single non-

overlapping resonance. Nonetheless, it was shown [5] that there are a class of problems,

such as the prediction of saturation levels, where the treatment of the island dynamics with

this intuitively derived diffusion coefficient gives results that correlate well when compared

with the predictions of more accurate descriptions. Thus with appropriate caution, we will

use the diffusion coefficient we have calculated for a single island in the hyper-resistivity

problem. In particular, we have in mind a dynamical system, where tearing modes cause

δBr to slowly grow, and where there is a gradient in the current profile around the resonant

surface. Then for an island growing sufficiently slowly that induction effects can be ignored,

the current density formed from two open-field lines that have reconnected to form a closed-

island region, has a current density that is the average of the current density that is the

average of the surrounding open field lines. This means that the current density in the island

is flat, independent of the surface in the island, with a rather steep current gradient arising

at the surfaces that are adjacent to the open field lines. Somewhat outside the islands,

the current density is close to the value calculated when there are no islands. This type of

dynamical behavior is produced by our diffusion model, where the diffusion zone is limited

to the region just surrounding the separatrix. This is also just the type of problem that was

studied in Ref. [5], where phase space island dynamics was studied rather successfully using

just this diffusion model.

We now need to discuss the important short mean-free-path limit. This problem was

treated in Ref. [4], where the conclusion was reached that the radial electron diffusion in a

stochastic magnetic field is reduced by a factor Lmfp/Lc, where Lc is the correlation distance

along a field line needed to make the magnetic field stochastic. As a result, if neglecting colli-
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sions the magnetic diffusion coefficient isDM , which is given in terms of modal perturbations

by the middle term of Eq. (21), and which also must have the form DM ≈ ∆r2B20/Lc, where

∆r is the random radial step taken by a field line after it moves a decorrelation distance

Lc along a field line. Note that the correlation distance is in general difficult to calculate,

and it will depend on the degree of overlap of the perturbed magnetic modes; further when

islands just overlap the magnetic correlation length will scale as the circumferential length

of the island vthe/ωtr ∼ B(qRr/smBφδBr)
1/2. Rechester and Rosenbluth conclude that for

the short mean-free-path regime the radial diffusion coefficient will scale as

Dr ∼
vtheDMLmfp

B2Lc
−→

vtheDMLmfp

B2(Lc + Lmfp)
(23)

where the last term is an interpolation between long and short mean-free-path limits.

We propose to continue to use a somewhat modified form of Eq. (23) when magnetic

field lines are not completely stochastic, so that island structures can be resolved even when

there is some overlap of magnetic islands and also if island overlap is not present. In this

case the magnetic correlation length for both cases is vthe/ωtr. However, if the cross-field

particle diffusion is fast enough so that the electron crosses the island transversely faster

than it moves around the structure by following a field line (either by direct flight in the long

mean-free-path limit or by multiple scatterings in the short mean-free-path limit), the radial

diffusion coefficient should not change the diffusion structure from what we have already

derived. Hence we propose that the appropriate model for the electron diffusion coefficient

should be

Dr ∼ vtheDM
(ωtr + νeff 0)

B20(ωtr + νeff 0 + ν‖)
(24)

where ν‖ is the electron collision rate (the subscript ‖ has been added to emphasize that it

arises from collisional effects that effect motion along a field line), with DM given by Eq. (21)

(with vthereplacing |v‖|). It should be kept in mind that this form is sensible in the overlap

regime only if island structure is clearly present [otherwise the estimate for the magnetic

correlation length is incorrect as it should ultimately be insensitive to the form of δB(r)].
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Similarly, the dependence on the enhanced perpendicular diffusion coefficient νeff 0 should

weaken considerably as the island structure disappears with increased perturbations.

Finally, we note that if we have an isolated island, and ν‖ > ωtr > νeff 0, we obtain

a diffusion coefficient that scales as Dr ∼ ∆2Isl/T1 ∼ ∆
2
Islω

2
tr/ν‖ ∼ ν‖(LmfpδBr/B)

2 where

T1 ≈ ν‖/ω
2
tr is the time for a particle to diffuse around the island after multiple collisional

steps along a field line. This diffusion coefficient is based on the same rationale as the use of

a diffusion coefficient for a particle transiting an isolated island in the long mean-free-path

limit. The coefficient used here differs from that proposed in Ref. [17], which would be

justified if an electron decorrelates from the magnetic island structure after one collision

time. Apparently the justification for the model used in Eq. (17) is that the banana orbit

width is larger than the island width. In our problem we assume the opposite is the case.

B. Equation for hyper-resistivity

Mindful of the caveats we have already noted, we propose the following diffusion coeffi-

cient to be used in all the regimes we intend to study,

Dr =
v2the
B2

∑
m,n

2|δBr|2(νeff 0 + ωtr)2[
(νeff 0 + ωtr)2 +

(
δrmvthesBφ
qrRB

)2
m,n

]
(νeff 0 + ωtr + ν‖)

. (25)

Now we proceed with constructing a hyper-resistivity theory that is valid over a wide

range of parameters. Upon averaging over a surface, the resulting model equation becomes

−C(f) +
e

me
E · b

∂f

∂v‖
= lim
νeff→0

1

B2
∇ ·

∑
m,n

r̂2|δBr|2 ν ′2eff v
2
ther̂[

ν ′2eff +
(
δrm vthesBφ
qBrR

)2
m,n

]
(ν ′eff + ν‖)

·∇f (26)

where,

ν ′eff ≈ ν
1/3
⊥

(
ρsmBφvthe

qRrB

)2/3
+ ωtr (27)

and we have differentiated between collision processes along the field line, denoted by ν‖,

and collision processes perpendicular to the field line, denoted by ν⊥. If other anomalous

cross-field processes are present (e.g. cross-field diffusion due to drift wave turbulence) it
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can be modelled by increasing the value of ν⊥ above its classical value to an appropriate

level.

Thus the right-hand side of Eq. (18), which we denote as the quasi-linear operator QL(f)

is altered to

QL(f) =
v2the
B2
∇ ·

∑
m,n

r̂ 2|δBr|2ν ′2eff r̂

(ν ′eff + ν‖)
[
ν ′2eff +

(
δrmvthesBφ
rRqB

)2
m,n

] ·∇f. (28)

We now assess how successful we have been in obtaining an expression that can give

hyper-resistivity with a finite number of modes. It turns out we are close, but we have

to make one additional ad-hoc modification in order to obtain a form that will lead to a

magnetic helicity conservation. We alter Eq. (28) slightly to obtain a kinetic equation of the

form

−C(f) +
e

me
E · b

∂f

∂v‖
=
ne

B2
∇ ·

∑
m,n

2|δBr|2m,n ν
′2
eff v

2
ther̂ r̂

ne

[
ν ′2eff +

(
δr
mvthesBφ
qBrR

)2
m,n

]
(ν ′eff + ν‖)

· ∇f (29)

with ne the electron density (the inverse of the electron density is placed inside the divergence

operator to ultimately form the expected magnetic helicity conservation structure in the

Ohm’s law with hyper-resistivity) . Now, when we take the moment of Eq. (29) (we integrate

Eq. (28) by 2πe
∫
dµ

me
dv‖ v‖B

2) with µ = mev
2
⊥/2B, we find

BE‖ = ηj‖B −∇ · λ · ∇(j‖/B) (30)

where hyper-resistivity coefficient λ is given by

λ =
∑
m,n

2|δBr|2m,n ν
′2
eff v

2
theme

nee2
(
ν ′2eff +

[
δr
mvthesBφ
qBrR

]2
m,n

)
(ν ′eff + ν‖)

. (31)

Now the hyper-resistivity coefficient has the required form needed to conserve global

magnetic helicity if the diffusion coefficient vanishes on the boundary. As asserted, to obtain

this form we needed to make ad-hoc assumptions of what radial derivatives should be acted

upon with regard to the mean magnetic field and mean density. However, it is important that

in the short mean-free-path limit the driving term of the hyper-resistivity is proportional
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to the second derivative of j‖/B. This means the hyper-resistivity term will attempt to

flatten j‖/B even without the artificial shaping we used to obtain the hyper-resistivity term

in conservation form.

It remains an open question, whether we can find deeper subtleties to our modeling, so

as to better justify the precise conservation form of the hyper-resistivity term. One source

of difficulty may be that the convection of magnetic helicity includes the magnetic helicity

associated with the turbulent field. It is possible that in obtaining an equation for the

evolution of the mean fields, precise magnetic helicity conservation does not emerge because

we have not separated out the non-resonant component associated with the perturbing

magnetic fields.

At any event, Eq. (30) seems to be a good starting point for a model that describes

hyper-resistivity when there is a finite number of tearing modes. The next stage of the

investigation is to study the equation for the mode evolution. For example, if modes do not

couple, one can use Rutherford’s theory for island growth [8], together with the solution of

the hyper-resistivity equation (30) to obtain the form of the current profile with time. If

the system has a small positive ∆′, (which may be the case if the system is only stable to

tearing modes when there is only a small deviation from a fully relaxed Taylor state [30]),

the saturation levels of the islands will be small when one applies rules established in the

literature (e.g. see Ref. [31] for calculating ∆′ of a finite amplitude mode). Small island

saturation is required for the theory we have developed. Still, with a limited number of

modes, strong hyper-resistivity effects can arise when the modes grow to a large enough

level to cause mode overlap. Further nonlinear modeling can be obtained by building upon

mode-mode coupling theories, such as developed by Fitzpatrick [32] where the phases of the

various tearing modes can lock and cause rotation, etc. These investigations will be subjects

of future work.

19



V. DISCUSSION

Hyper-resistivity may have important consequences for magnetic field evolution in RFP’s

and spheromaks. We have developed a coupled mode dynamics-diffusion model for these sys-

tems when they operate at high temperatures where they are expected to have well-defined

magnetic flux surfaces most of the time, but with stochastic magnetic field entanglement

arising periodically due to the development of unstable tearing modes. The magnetic entan-

glement can either be localized in space, or spread out over most of the contained plasma

region. In our model the entanglement is needed to induce a dynamo-like action to sustain

in the the mean the reversed toroidal magnetic field structure in an RFP, and to allow the

magnetic helicity to diffuse into the core of a spheromak, where larger values of j‖/B are

sustained at the edge with external electrodes.

Several important questions are of concern in the model we have developed. the first is

that in order have rapid relaxation to a Taylor state by active tearing modes, then during

the phase where magnetic stochasticity is present it is necessary for the hyper-resistive term

to be larger than the usual Ohmic term. For establishing scaling we take r/a ∼ s ∼ q ∼

Bφ/Bθ ∼ 1. There are basically two types of hyper-resistive relaxation modes, (a) partial

relaxation where the island chain is over a fraction of the discharge and (b) total relaxation

where the island chain spans the entire discharge. Our theory assumes that the magnetic

islands, of radial width ∆isl ∼ (aRδBr/B)1/2, only moderately overlap so that their identities

are not destroyed during magnetic entanglement. Then, when there is relaxation of the entire

discharge due to N island structures that are roughly evenly spread out across the plasma,

a maximum saturation of the magnetic field perturbation δBr/B ∼ (a/R)/N2 is inferred.

Further, the theory we developed divides into a short mean-free-path limit, where

ε1 ≡ Lmfp(δBr/B aR)1/2 < 1 (32)

and the long mean-free-path limit where ε1 > 1. We will see that in the short mean-free-

path-limit our theory does not predict rapid current relaxation due to the hyper-resistive
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term compared with the ohmic diffusion rate. However, in the long mean-free-path limit,

rapid current relaxation due to the hyper-resistive mechanism we have described is possible.

First consider the short mean-free-path condition, ε1 < 1, and compare the ratio, r1

of the hyper-resistive to ohmic term in Eqs. (30) and (31). If partial relaxation arises,

hyper-resistive diffusion acts in a radial region ∆w where there is overlap, ∆w ∼ N∆isl ∼

N(aRδBr/B)
1/2. Then we find,

r1 ∼ (δBrLmfp/B∆w)
2 ∼

δBrL
2
mfp

BN2aR
(33)

and if we require r1 > 1 while satisfying Eq. (32), we must satisfy,

aR

L2mfp
>
δBr

B
>
N2aR

L2mfp
, (34)

which is an incompatible condition as N > 1. Thus this regime does not describe more rapid

current profile relaxation from the hyper-resistive effect than from Ohmic diffusion. This

difficulty persists even when the hyper-resistive diffusion acts on the entire current profile.

In that case the saturation condition, δBr/B ∼ (a/R)/N2, inherent our theory, leads to the

same incompatibility condition given by Eq. (34).

Now we consider the long mean-free-path-regime, ε1 > 1. When there is partial current

profile relaxation, so that δBr/B < (a/R)/N2, the ratio of the hyper-resistive to ohmic

terms r2, is,

r2 =

(
δBr
B

)3/2
(Ra)1/2Lmfp

/
∆2w ∼ Lmfp

(
δBr
B

)1/2/[
N2(Ra)1/2

]
≡

ε1
N2

. (35)

We then have rapid partial relaxation of the current profile compared with its Ohmic evo-

lution rate if,

a/(RN2) > δBr/B > N4Ra/L2mfp. (36)

We estimate Lmfp ∼ 104 T 2kev/n14 cm. [Tkev is the electron temperature in kev units, and n14

is the particle density in units of 1014 cm−3). Then rewriting Eq. (36), with the major radius

R expressed as Rm in meters, we have,

21



a

(RN2)
>
δBr

B
> 10−4

a

R
N4n14

R2m
T 4kev

. (37)

Thus for a meaningful theory for rapid relaxation of the current profile to emerge from our

theory we need Tkev > 0.1n
1/2
14 R

1/2
m N3/2. For example with these estimates we have for an

RFP with N = 3, and a/R ∼ 0.25, and n14 ∼ 0.5,

.025 >
δBr

B
> .0005

R2m n
2
14

T 4kev
.

This indicates a regime can be reached in an RFP (e.g. MST has Rm = 1.5 and Tkev ≈

0.5) where rapid relaxation of the current profile due to hyper-resistivity can apply over a

fraction of the current profile. The condition is somewhat more stringent for spheromaks,

where a/R ∼ 1 and we require for N = 3,

0.1 >
δBr

B
> 2× 10−3

n214R
2
m

T 4kev
.

For example for Rm ∼ 0.3 and n14 ∼ 1.0, we see that we need Tkev >∼ 0.2 kev to have a

rapid relaxation caused by 3 modes over a fraction of the plasma. Experiments in the SSPX

spheromak have produced Tkev ∼ .12 for n14 ∼ 1, which is somewhat short of the estimate

for when rapid relaxation in the long mean-free-path regime is applicable.

Thus we have demonstrated that if ε1 is sufficiently large, we can obtain dominance

of the hyper-resistivity term during relaxation of the current profile, and our model may

be appropriate for present day experiments in an RFP, but that improved confinement

parameters need to be obtained in spheromaks to test our theoretical model.

A potential difficulty with the hyper-resistive mechanism for controlled fusion application

is that it implies exceeding rapid thermal diffusion over the region where current relaxation

arises. The thermal diffusivity as given by the modified Rechester-Rosenbluth formula,

Eq. (29) is

Dr = vthe(Ra)
1/2

(
δBr

B

)3/2
.

The thermal relaxation time τthm over a radial width ∆w ∼ N∆isl ∼ N(aRδBr/B)
1/2 of

overlapping islands is given by

τthm ∼
∆2w
Dr
∼
N2(aRB/δBr)

1/2

vthe
.
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The current relaxation rate νcur evaluated when hyper-resistive relaxation dominates con-

ventional Ohmic relaxation is given by,

νcur ∼

(
δem

∆w

)2
r2vthe

Lmfp
∼
δ2emvthe(B/δBr)

1/2

N4(Ra)3/2

where δem = c/ωpe is the electromagnetic skin depth. Thus νcurτthm ∼
δ2emB

δBraRN2
<
δ2em L

2
mfp

(N3aR)2

is an extremely small number (δem ∼ .0005n
−1/2
14 m). Hence the temperature will flatten

extremely rapidly over the region where magnetic islands overlap.

If the island chain does not reach the plasma edge, there can still be good thermal

insulation. Indeed if ∆w � a, global heat confinement is hardly affected by local current

relaxation. However, if the island chain reaches the edge, heat in the flattened temperature

region is rapidly lost, though the loss rate is mitigated at the edge by the decrease of

heat conduction that arises with a shortened mean-free-path and by an electron confining

potential that forms at solid walls that open field lines reach. Hence at the edge, where there

is an added effect of ohmic heating of a relatively high resistive plasma, one should maintain

an electron temperature close to 100 ev. The difficulty is the possibility of a thermal collapse

which can rapidly lower the temperature throughout the plasma to one that is close to the

edge value.

Our theory does not demonstrate a strong current relaxation effect at low temperature

that is characteristic of spheromak experiments that exist today [33]. Progress has been

made in numerically simulating spheromak start-up conditions using the Nimrod code [28]

and the results do not appear to exhibit reconnection as long as the gun voltage is applied.

Instead a state forms that appears to evolve from laminar flow [34] in which field lines remain

reconnected to the gun even though some lines become extended in length by coiling up inside

the flux conserver [35]. However, in the actual experiment there may still be reconnection

processes that are difficult to resolve in computer simulations, or even the physics of these

reconnection processes may not be described by the simulation. It appears difficult for the

theory developed in this work to treat this regime as it suppressed the effect of plasma

flows which is likely to be extremely important during the formation phase. However, if
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reconnection does eventually form closed magnetic surface regions, the plasma should heat

further, and eventually the model developed here should be applicable.

In experiments such as MST [36], magnetic flux surfaces are known to be well defined, and

data indicates that tearing modes form and lead to dynamo-like action with abrupt current

profile collapses. In these experiments our formalism is likely to have relevance, although

we will need to further develop the theory to incorporate observed internal mode locking (to

produce so-called slinky modes) that form from the nonlinear interaction of tearing modes.
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Appendix: Solution to the single-mode problem

In the helical mode problem we solve Eq. (8) neglecting C(f) and E‖. We seek a steady

solution when we use ξ and r as variables, and expand close to the rationale surface, and

B · r̂ = 2δBr sin mξ. We find

−v‖
δr

B

(
sBφ

qrR

)
m,n

∂f

∂ξ
+
2v‖δBr sin ξ

B

∂f

∂r
= 0. (A1)

The equation allows a steady solution f = f(Φ, χ̃) with

χ̃ = −
δr2

2

(
Bφs

q

)
m,n

+
2 δBrR rm,n cosmξ

m
. (A2)

The actual dependence of f(Φ, χ̃) depends on detailed dynamics. However, one can

imagine a limit where the mode amplitude grows slowly compared to the particle trap-

ping frequency (to be estimated shortly below). In this case, the distribution will mix

f(Φm,n + ∆Φ) and f(Φm,n − ∆Φ) together, where ∆Φ ≈ Bφ rd∆r and ∆r is the width of

the separatrix (a more precise evaluation is possible, but the calculation will only change

a numerical factor). As a result f(Φ, χ) in the island region is flat and equal to f(Φm,n),

surrounded by a region where f is close to the unperturbed value f(Φ) with only a weak

dependence on χ̃.

To obtain the width of the island region we solve the characteristic equations,

dξ

dt
=
−v‖
B

(
sBφ

qrB

)
m,n

δr,
dδr

dt
=
2v‖δBr sin mξ

B
. (A3)

Combining these two equations leads to the pendulum equation,

d2ξ

dt2
= −2v2‖

(
sBφ
B2qrR

)
m,n

δBr sin mξ. (A4)

The first integral of this equation is,

1

2

(
dξ

dt

)2
− 2 v2‖

(
sBφ

qrR

)
m,n

δBr cosmξ

m
= C. (A5)

Particles are trapped in an island for
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−2v2‖
m

(
sBφ
B2qrR

)
m,n

δBr < C <
2v2‖
m

(
sBφ
B2qrR

)
m,n

δBr (A6)

with a characteristic transit period, ωtr, (the trapping frequency of deeply trapped particles)

ωtr ∼ v‖

(
2sBφmδBr
B2qrR

)1/2
m,n

(A7)

and the radial width of the island, ∆Isl ≈
2δBr
B

v‖
ωtr
, is,

∆Isl ≈

(
2δBrqrR

sBφm

)1/2
m,n

. (A8)

This solution gives the correct scaling as long as diffusion does not cause particles to cross

the island structure at a rate νeff > ωtr. This aspect of the problem is discussed further in

the text.
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